A fixed point theorem in b- metric space.

Sanjay Kumar Tiwari 1* \& Amit Kumar Mishra
1- University Department of Mathematics, Magadh University, Bodhgaya. Gaya, Bihar(INDIA)

E-mail * tiwari.dr.sanjay@gmail.com

Abstract: In this paper we have established a fixed point in b-metric space .Our results generalize many previous results of the literature.

1. Introduction: One of the most popular generalization of metric space is b-metric space. It was introduced by Bakhtin 1989 [1] as quasi- metric space and proved a contraction principle for such spaces. In 1993 Czerwik introduced them under the name "b-metric space" first for $S=2$ [7] and then for an artribary $S \geq 1$ in [8] with application to fixed points. Later an many researcher Boriceanu [2,3] Bota [4] Chung [6], Du [9], Kir [5] and many others established fixed point theorem in b-metric space.

In this paper. We have extended some known fixed point results in b-metrix space. We have studied contractive type mappings and showed the validity of the result in b-metric space. We have established results for single map and two maps.

2. Preliminaries

Definition (2.1) [8]: Let X be a nonempty set and $\mathrm{s} \geq 1$ be a given real number. A function $\mathrm{d}: \mathrm{XxX} \rightarrow \mathrm{R}+$ is said to be a b -metric on X if the following conditions hold:
(i) $d(x, y)=0$ if and only if $x=y$;
(ii) $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}$; x$)$ for all x ; y 2 X ;
(iii) $d(x, y) \leq s(d(x ; z)+d(z ; y))$ for all $x ; y ; z \in X$.

The pair (X; d) is called a b-metric space.

We observe that if $s=1$, then the ordinary triangle inequality in a metric space is satisfied, however it does not hold true when $s>1$. Thus the class of b-metric spaces is effectively larger than that of the ordinary metric spaces. That is, every metric space is a b-metric space, but the converse need not be true. The following examples illustrate the above remarks.

Example (2.2) [8]: Let $X=\{1,0,-1\}$. Define $d: X x X \rightarrow R^{+}$by $d(x, y)=d(y, x)$ for all $x, y \in X ; d(x, x)=0 ; x \in X$ and $d(-1,0)=3 ; d(-1,1)=d(0,1)=1$. Then (X, d) is a bmetric space, but not a metric space since the triangle inequality is not satisfied. Indeed, we have that
$\mathrm{d}(-1,1)+\mathrm{d}(1,0)=1+1=2<3=\mathrm{d}(-1,0):$
It is easy to verify that $s=3 / 2$.
Example (2.3)[8] : Let $X=R$ and $d: X X X \rightarrow R^{+}$be such that $d(x ; y)=j x-y j^{2}$ for any $x, y \in X$. Then $(X ; d)$ is a b-metric space with $s=2$, but not a metric space.

Definition (2.4) [8]: Let (X, d) be a b-metric space, $\mathrm{x} \in \mathrm{X}$ and $\left(\mathrm{x}_{\mathrm{n}}\right)$ be a sequence in X . Then
(i) $\left(\mathrm{x}_{\mathrm{n}}\right)$ converges to x if and only if $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right)=0$. We denote this by $\lim _{n \rightarrow \infty} x_{n}=x$ as $x_{n} \rightarrow x(n \rightarrow \infty) \mathrm{x}_{\mathrm{n}}$.
(ii) $\quad\left(\mathrm{x}_{\mathrm{n}}\right)$ is Cauchy if and only if $\lim _{m, n \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$
(iii) ($\mathrm{X} ; \mathrm{d})$ is complete if and only if every Cauchy sequence in X is convergent.

Proposition (2.5) [8] : In a b-metric space (X, d) the following assertions hold:
(i) a convergent sequence has a unique limit,
(ii) each convergent sequence is Cauchy,
(iii)in general, a b -metric is not continuous.

In general ab -metric function d for $\mathrm{k}>1$ is not jointly continuous in all of its two variables.

Definition (2.6) [8]: Let (X,d) be a b-metric space. If Y is a nonempty subset of X, then the closure Y of Y is the set of limits of all convergent sequences of points in Y , i.e.,
$\mathrm{Y}=\left\{\mathrm{x} \in \mathrm{X}:\right.$ there exists a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in Y such that $\left.\lim _{n \rightarrow \infty} x_{n}=\mathrm{x}\right\}$

Definition. (2.7) [8]: Let (X, d) be a $\mathrm{b}-$ metric space. Then a subset $\mathrm{Y} \subset \mathrm{X}$ is called closed if and only if for each sequence $\left\{x_{n}\right\}$ in Y which converges to an element x, we have $x \in Y$ (i.e., $Y=\bar{Y}$).

Definition (2.8) [8]: Let (X, d) be a b-metric space and let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a given mapping. We say that T is continuous at $\mathrm{x}_{0} \in \mathrm{X}$ if for every sequence $\left(\mathrm{x}_{\mathrm{n}}\right)$ in X , we have $x_{n} \rightarrow$ x_{0} as $n \rightarrow \infty \Rightarrow T\left(x_{n}\right) \rightarrow T\left(x_{0}\right)$ as $n \rightarrow \infty$.

If T is continuous at each point x 02 X , then we say that T is continuous on X .

3. Main Results:

Theorem 3.1: Let $0 \leq \alpha \leq 1, \mathrm{p}$ and q be non-negative numbers such that $\mathrm{p}+\mathrm{q}<1$ and (i) $\alpha|\mathrm{p}-\mathrm{q}|<1-(\mathrm{p}+\mathrm{q})$
and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be mapping of a complete b -metric space (X, d) such that whenever x, y are distinct elements in X .
(ii) $d(T x, T y) \leq \alpha$ max. $\{\mathrm{d}(x, y), d(y, T x), d(y, T x)\}$

$$
\begin{equation*}
+(1-\alpha)[p d(x, T y)+q d(y, T x)] . \tag{1}
\end{equation*}
$$

such that max. $\left\{\frac{\alpha+(1-\alpha) p s}{1-(1-\alpha) p s} \cdot \frac{p s}{1-p s}\right\}<1$ and $s \geq 1$.
Then T has a unique fixed point.
Proof: Let $x_{0} \in X$ and $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence in X defined as

$$
\begin{equation*}
x_{n}=T x_{n-1}=T^{n} x_{0}, n=1,2,3 . \tag{2}
\end{equation*}
$$

By (1) and (2) we obtain

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right)= & d\left(T x_{n-1} T x_{n}\right) \\
& \leq \alpha \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, T x_{n-1}\right), d\left(x_{n}, T x_{n}\right)\right\} \\
& +(1-\alpha)\left\{p d\left(x_{n-1}, T x_{n}\right)+q d\left(x_{n}, T x_{n-1}\right)\right\} . \\
& =\alpha \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\} \\
& +(1-\alpha)\left\{p d\left(x_{n-1}, x_{n+1}\right), q d\left(x_{n}, x_{n}\right)\right\} .
\end{aligned}
$$

$$
\text { Or, } d\left(x_{n}, x_{n+1}\right) \leq \alpha \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}
$$

If. max. $\left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}=d\left(x_{n-1}, x\right)$, then

$$
d\left(x_{n} x_{n+1}\right) \leq \alpha d\left(x_{n-1}, x_{n}\right)+(1-\alpha) p s\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right]
$$

Or, $1-[(1-\alpha) p s] d\left(x_{n}, x_{n+1}\right) \leq \alpha+(1-\alpha) p s \mathrm{~d}\left(x_{n-1}, x_{n}\right)$
Or, $\quad d\left(x_{n}, x_{n+1}\right) \leq \frac{\alpha+(1-\alpha) p s}{1-(1-\alpha) p s}$
If $\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\}=d\left(x_{n}, x_{n+1}\right)$. Then,
$d\left(x_{n}, x_{n+1}\right) \leq \alpha d\left(x_{n}, x_{n+1}\right)+(1-\alpha) p s\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right]$
Or, $\quad\left(\frac{1}{1-\alpha}\right) d\left(x_{n}, x_{n+1}\right) \leq \frac{\alpha}{(1-\alpha)}+p s\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right]$
Or, $\quad\left(\frac{1}{1-\alpha}\right)-\left(\frac{\alpha}{1-\alpha}\right) d\left(x_{n}, x_{n+1}\right) \leq p s\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right]$
Or, $d\left(x_{n}, x_{n+1}\right) \frac{p s}{1-p s} d\left(x_{n-1}, x_{n}\right)$
Thus, $d\left(x_{n}, x_{n+1}\right) \leq \max \left\{\frac{\alpha+(1-\alpha) p s}{1+(1-\alpha) p s}, \frac{p s}{1-p s}\right\} d\left(x_{n-1}, x_{n}\right)$

$$
\leq \beta \mathrm{d}\left(x_{n-1}, x_{n}\right) \text { when } \beta=\max \cdot\left[\frac{\alpha+(1+\alpha) p s}{1-(1-\alpha) p s}, \frac{p s}{1-p s}\right] \text {. }
$$

Again,

$$
\begin{aligned}
d\left(x_{n+1}, x_{n+2}\right) & =d\left(T x_{n}, T x_{n+1}\right) \\
& \preceq \alpha \max .\left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, T x_{n}\right), d\left(x_{n+1}, T x_{n+1}\right)\right\} \\
& +(1-\alpha)\left[p d\left(x_{n}, T x_{n+1}\right)+q d\left(x_{n+1}, T x_{n}\right)\right] \\
& =\alpha \max .\left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\} \\
& +(1-\alpha)\left[p d\left(x_{n}, x_{n+2}\right)+q d\left(x_{n+1}, x_{n+1}\right)\right] \\
& \leq \alpha \max .\left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\} \\
& +(1-\alpha)\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)\right]
\end{aligned}
$$

If $d\left(x_{n}, x_{n+2}\right)$ is maximum, Then

$$
d\left(x_{n+1}, x_{n+2}\right) \leq \alpha d\left(x_{n+1}, x_{n+2}\right)+(1-\alpha) p s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)\right]
$$

Or, $\left(\frac{1}{1-\alpha}\right) d\left(x_{n+1}, x_{n+2}\right) \leq\left(\frac{\alpha}{1-\alpha}\right) d\left(x_{n+1}, x_{n+2}\right)+p s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)\right]$
Or, $d\left(x_{n+1}, x_{n+2}\right) \leq \frac{p s}{1-p s} d\left(x_{n}, x_{n+1}\right)$
Thus, $d\left(x_{n+1}, x_{n+2}\right) \leq \max .\left\{\frac{\alpha+(1-\alpha) p s}{1-(1-\alpha) p s}, \frac{p s}{1-p s}\right\} \frac{d\left(x_{n}, x_{n+1}\right)}{d\left(x_{n}, x_{n+1}\right)} \leq \beta d\left(x_{n}, x_{n+1}\right)$
Proceeding it this way, we have :

$$
d\left(x_{n+1}, x_{n+2}\right) \leq \beta d\left(x_{n}, x_{n+1}\right)
$$

$$
\begin{aligned}
& \leq \beta^{2} d\left(x_{n-1}, x_{n}\right) \\
& \\
& \leq \beta^{n} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

However if $p, q \in[0,1 / 2)$, then $\beta<1$.
If max. $\{p, q\} \geq 1 / 2$. Then .
$\frac{\alpha+(1-\alpha) x}{1-(1-\alpha) x} \leq \frac{x}{1-x} \Rightarrow 1 / 2 \leq x \quad \forall x \in[0,1)$, it follow from (i) that $0 \leq \beta \leq 1$.
Now we claim that $\left\{x_{n}\right\}_{n=j}^{\infty}$ is a Cauchy sequence in X.
Let $\mathrm{m}, \mathrm{n}>0$ with $\mathrm{m}>\mathrm{n}$.

$$
\begin{aligned}
d\left(x_{m}, x_{n}\right) & \leq s d\left(x_{n}, x_{n+1}\right)+s^{2} d\left(x_{n+1}, x_{n+2}\right)+s^{2} d\left(x_{n+2}, x_{n+3}\right)+\ldots \\
& \leq s \beta^{n} d\left(x_{0}, x_{1}\right)+s^{2} \beta^{n+1} d\left(x_{0}, x_{1}\right)+s^{3} \beta^{n+2}\left(x_{0}, x_{1}\right)+\ldots+s^{m} \beta^{n+m+1} d\left(x_{0}, x_{1}\right) \\
& \leq s \beta^{n} d\left(x_{0}, x_{1}\right)\left[1+s \beta+(s \beta)^{2}+\ldots .+(s \beta)^{m-1}\right] \\
& \leq s \beta^{n} d\left(x_{0}, x_{1}\right)\left[\frac{1-(s \beta)^{n-(m-1)}}{1-s \beta}\right]
\end{aligned}
$$

When we take $\mathrm{m}, \mathrm{n} \rightarrow \infty, \lim _{n \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$
Hence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence is X . Since $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence $\left\{x_{n}\right\}$ converges to u in X (say) as X is a complete b-metric space.
Now we shall show that u is the fixed point of T. For this we consider :
$d\left(T u, T x_{n}\right) \leq \alpha \max .\left\{d\left(u, x_{n}\right), d(u, T u), d\left(x_{n}, T x_{n}\right)\right\}$

$$
+(1-\alpha)\left[p d\left(u, T x_{n}\right)+q d\left(x_{n}, T u\right)\right]
$$

Taking $\mathrm{n} \rightarrow \infty$ we have.

$$
\begin{aligned}
& d(u, T u) \leq \alpha \max .\{d(u, u), d(u, T u), d(u, u)\}+(1-\alpha)[p d(u, u)+q d(u, T u)] \\
& \text { Or }, d(u, T u) \leq \alpha d(u, T u)+(1-\alpha) q d(u, T u) \\
& \text { Or, }(1-q)(u, T u) \leq 0, \text { this possible only if } d(u, T u)=0 \Rightarrow \mathrm{Tu}=\mathrm{u}
\end{aligned}
$$

Hence u is the fixed point of T. Now we claim that u is the unique fixed point of T. For this Let $\mathrm{u} \neq \mathrm{v}$ and $\mathrm{Tv}=\mathrm{v}$. New we have:

$$
\begin{aligned}
& d(u, v)=d(T u, T v) \leq \alpha \max .\{d(u, v), d(u, T u), d(v, T v)\}+(1-\alpha)[p d(u, T v)+q d(v, T v)] \\
& \leq \alpha \max .\{d(u, v), d(u, u), d(v, v)+(1-\alpha)\}[p d(u, v)+q d(u, v)] \\
& =\alpha d(u, v)+(1-\alpha)(p+q) d(u, v) .
\end{aligned}
$$

Or, $\left(\frac{1}{1-\alpha}\right) d(u, v) \leq\left(\frac{\alpha}{1-\alpha}\right) d(u, v)+(p+q) d(u, v)$
Or, $d(u, v), \leq(p+q) d(u, v)$
Or, $1-(p+q) d(u, v) \leq 0$ which is a contradiction Hence $\mathrm{d}(\mathrm{u}, \mathrm{v})=0$ i.e. $\mathrm{u}=\mathrm{v}$. is unique fixed point of T .

REFERENCES

[1]. I.A. Bakhtin : The contraction mapping principle in quasi metric spaces. Functionalmyi Analogy, Ulianovskii Gos. Ped. Inst. 30(1989), 26-37(Russian)15-19.
[2]. M. Boriceanu : Fixed point theory for multi valued generalized contraction on a set with two b- metrices.

Babes-Balyai University Mathematics Studia LIV (2009) No. 3, 1-14.
[3]. M. Boriceanu : Fixed point theory on spaces with value valued b-metrics.

Demonstratio Mathematics XLII (2009) no. 4, 285-301
[4]. C. Varga , A.Molnar and M. Bata: An ekelands variational principle in b-metric spaces.

Fixed point theory 12(2011), No. 2, 21-28.
[5]. M. Kir and H. kiziltune : On some well known fixed point theorems in b-metric spaces.

Turkish Journal of Analysis and Number theory 1.(2013)
No. 1, 13.16
[6]. Renu Chug, V. kumar and T. Kadian : Some fixed point theorems for multi valued mappings in generalized b -metric spaces. International journal of Mathematical. Archive 3. (2012), No. 3, 1198-1210.
[7]. S. Czerwik : Contraction Mappings in b-metric spaces.
Acta. Math. In 5-11, 15,21. form . Univ. Ostrav. 1. (1993).
[8]. S. Czerwik : Non linear set valued contraction in B-metric spaces.
Attic Semin. Mat. Fis. Univ. Modean 46 (1998) No. 2,
263-276. 15.
[9]. Wei Shih Du and E. karapynar : A note on Cone b-metric and its related results : generalization or equivalence ?

Fixed Point Theory and Applications 2012,

